Ionic Size Effects: Generalized Boltzmann Distributions, Counterion Stratification, and Modified Debye Length.

نویسندگان

  • Bo Liu
  • Pei Liu
  • Zhenli Xu
  • Shenggao Zhou
چکیده

Near a charged surface, counterions of different valences and sizes cluster; and their concentration profiles stratify. At a distance from such a surface larger than the Debye length, the electric field is screened by counterions. Recent studies by a variational mean-field approach that includes ionic size effects and by Monte Carlo simulations both suggest that the counterion stratification is determined by the ionic valence-to-volume ratios. Central in the mean-field approach is a free-energy functional of ionic concentrations in which the ionic size effects are included through the entropic effect of solvent molecules. The corresponding equilibrium conditions define the generalized Boltzmann distributions relating the ionic concentrations to the electrostatic potential. This paper presents a detailed analysis and numerical calculations of such a free-energy functional to understand the dependence of the ionic charge density on the electrostatic potential through the generalized Boltzmann distributions, the role of ionic valence-to-volume ratios in the counterion stratification, and the modification of Debye length due to the effect of ionic sizes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean-field description of ionic size effects with nonuniform ionic sizes: a numerical approach.

Ionic size effects are significant in many biological systems. Mean-field descriptions of such effects can be efficient but also challenging. When ionic sizes are different, explicit formulas in such descriptions are not available for the dependence of the ionic concentrations on the electrostatic potential, that is, there is no explicit Boltzmann-type distributions. This work begins with a var...

متن کامل

A New Model for the Electrical Double Layer Interaction between Two Surfaces in Aqueous Solutions

A new theoretical model is developed to evaluate the total potential energy of interaction between two charged flat plates in aqueous solutions. Instead of using the Boltzmann distribution to predict the ionic concentrations of counterion and coion, which is not correct for small confined spaces, this modified model determines the ionic concentrations of counterion and coion based on the Poisso...

متن کامل

Steric Effects in Electrolytes: A Modified Poisson-Boltzmann Equation

The adsorption of large ions from solution to a charged surface is investigated theoretically. A generalized Poisson-Boltzmann equation which takes into account the finite size of the ions is presented. We obtain analytical expressions for the electrostatic potential and ion concentrations at the surface, leading to a modified Grahame equation. At high surface charge densities the ionic concent...

متن کامل

Influence of the Debye length on the interaction of a small molecule-modified Au nanoparticle with a surface-bound bioreceptor.

We report that a shorter Debye length and, as a consequence, decreased colloidal stability are required for the molecular interaction of folic acid-modified Au nanoparticles (Au NPs) to occur on a surface-bound receptor, human dihydrofolate reductase (hDHFR). The interaction measured using surface plasmon resonance (SPR) sensing was optimal in a phosphate buffer at pH 6 and ionic strength excee...

متن کامل

Glycocalyx electrostatic potential profile analysis: ion, pH, steric, and charge effects.

The Poisson-Boltzmann equation is modified to consider charge ionogenicity, steric exclusion, and charge distribution in order to describe the perimembranous electrostatic potential profile in a manner consistent with the known morphology and biochemical composition of the cell's glycocalyx. Exact numerical and approximate analytical solutions are given for various charge distributions and for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nonlinearity

دوره 26 10  شماره 

صفحات  -

تاریخ انتشار 2013